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We study the distribution and scaling of the extreme height fluctuations for Edwards-Wilkinson-type relax-
ation on small-world substrates. When random links are added to a one-dimensional lattice, the average size of
the fluctuations becomes finite(synchronized state) and the extreme height diverges only logarithmically in the
large system-size limit. This latter property ensures synchronization in a practical sense in small-world coupled
multi-component autonomous systems. The statistics of the extreme heights is governed by the Fisher-Tippett-
Gumbel distribution.
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Synchronization is a fundamental problem in natural and
artificial coupled multi-component systems[1]. Since the in-
troduction of small-worldsSWd networks[2] it has been well
established that such networks can facilitate autonomous
synchronization[1]. Examples include noisy coupled phase
oscillators[3] and scalable parallel simulators for asynchro-
nous dynamics[4]. In essence, the SW coupling introduces
an effective relaxation to the mean of the respective local
field variables(or local “load”), and induces(strict or anoma-
lous) mean-field-like behavior[5,6]. In addition to the aver-
age load in the network, knowing the typical size and the
distribution of the extreme fluctuations[7–9] is of great im-
portance from a system-design viewpoint, since failures and
delays are triggered by extreme events occurring on an ini-
vidual node.

Structural and scaling properties of SW networks have
been investigated intensively[2,10–14]. In this paper, we
focus on the steady-state properties of the extreme fluctua-
tions in SW-coupled interacting systems with relaxational
dynamics. In contrast, consider, for example, kinetically
growing possibly non-equilibrium surfaces with only short-
range interactions(e.g., nearest neighbors on a lattice). Here
a suitably chosen local field variable is the local height fluc-
tuation measured from the mean[15]. It was shown[16] that
in the steady state, where the surface is rough, the extreme
height fluctuations diverge in the same power-law fashion
with the system size as the average height fluctuations(the
width). Similar observation was made[17] in the context of
the scalability of parallel discrete-event simulations(PDES)
[18–20], where the progress of the simulation is governed by
the Kardar-Parisi-Zhang(KPZ) equation[21]: here the “rela-
tive height” or local field variable is the deviation of the
progress of the individual processor from the average rate of
progress of the simulation[20]. The systems in the above
examples are “critical” in that the lateral correlation length of
the corresponding rough surfaces scales with the system size
[15]. For systems at criticality with unbounded local vari-
ables, the extreme values of the local fluctuations emerge

through the dominating collective long-wavelength modes,
and the extremal and the average fluctuations follow the
same power-law divergence with the system size[16,17].
Relationship between extremal statistics and universal fluc-
tuations in correlated systems has been studied intensively
[16,22–29]. Here we discuss to what extent SW couplings
(extending the original dynamics through the random links)
lead to the suppression of the extreme fluctuations. We illus-
trate our findings on an actual synchronization problem for
scalable PDES schemes[4].

First, we briefly summarize the basic properties of the
extremal values ofN independent stochastic variables
[7–9,28–30]. Here we consider the case when the individual
complementary cumulative distributionP.sxd (the probabil-
ity that the individual stochastic variable is greater thanx)
decays faster than any power law, i.e., exhibits an
exponential-like tail in the asymptotic large-x limit. (Note
that in this case the corresponding probability density func-
tion displays the same exponential-like asymptotic tail be-
havior.) We will assumeP.sxd.e−cxd

for large x values,
where c is a constant. Then the cumulative distribution
P,

maxsxd for the largest of theN events(the probability that
the maximum value is less thanx) can be approximated as
[29,30]

P,
maxsxd = fP,sxdgN = f1 − P.sxdgN . e−NP.sxd, s1d

where one typically assumes that the dominant contribution
to the statistics of the extremes comes from the tail of the
individual distributionP.sxd. With the exponential-like tail
in the individual distribution, this yields

P,
maxsxd . e−e−cxd+lnsNd

. s2d

The extreme-value limit theorem states that there exists a
sequence of scaled variablesx̃=sx−aNd /bN, such that in the
limit of N→`, the extreme-value probability distribution for
x̃ asymptotically approaches the Fisher-Tippett-Gumbel
sFTGd distribution [7,8]:
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P̃,
maxsx̃d . e−e−x̃

, s3d

with meankx̃l=g (g=0.577. . . being the Euler constant) and
variancesx̃

2=kx̃2l−kx̃l2=p2/6. From Eq.(2), one can deduce
that to leading order the scaling coefficients must beaN
=flnsNd /cg1/d andbN=sdcd−1flnsNd /cgs1/dd−1 [30,31]. The av-
erage value of the largest of theN original variables, to lead-
ing order, then scales as

kxmaxl = aN + bNg . flnsNd/cg1/d. s4d

We now consider the Edwards-Wikinson(EW) model
[32], a prototypical synchronization problem with relax-
ational dynamics[4,6,20], first on a regular one-dimensional
lattice: ]thi =−o j Gi j

ohj +histd. Herehi is the local height(or
load) at site i, −Gi j

o =di j +1+di j −1−2di j is the discrete Laplac-
ian on the lattice, andhistd is a short-tailed noise (e.g.,
Gaussian), delta-correlated in space and time. The width,
borrowing the framework from non-equilibrium surface-
growth phenomena, provides a sensitive measure for the av-
erage degree of synchronization in coupled multi-component
systems[4,20]. The EW model on a one-dimensional lattice
with N sites has a “rough” surface profile in the steady state
(de-synchronized state), where the average widthkw2lN

;ks1/Ndoi=1
N shi − h̄d2l diverges in the thermodynamic limit

as kw2l,N. (Here, h̄=s1/Ndoi=1
N hi is the mean height.) The

diverging width is related to an underlying diverging length
scale, the lateral correlation length, which reaches the system
sizeN for a finite system. Further, the maximum height fluc-

tuations(measured from the mean heighth̄) diverge in the

same fashion as the width itself, i.e.,kshmax− h̄d2l,N
[16,17].

Here we ask how the scaling behavior of the extremal
height fluctuations changes if weextend the same dynamics
to a SW network[2]. Then the equation of motion becomes
]thi =−o jsGi j

o +Vijdhj +histd, where −Vij =Jij −di jol Jil is the
Laplacian on the random part of the network. The symmetric
matrix Jij represents thequenchedrandom links on top of the
regular lattice, i.e., it is 1 if sitei and j are connected and 0
otherwise. In a frequently studied version of the SW network
[10–12,33] random links of unit strength are added to all
possible pair of sites with probabilityp/N (“soft” network
[6]). Here p becomes the average number of random links
per site. In a somewhat different construction of the network
(“hard” network[4,6]), each site has exactly one random link
(i.e., pairs of sites are selected at random, and once they are
linked, they cannot be selected again) and the strength of the
interaction through the random link isp. Note that both SW
constructions have a finite average degree for each node, and
are embedded in a finite dimension. The common feature of
the EW model in both SW versions is an effective nonzero
mass Sspd (in a field theory sense), generated by the
quenched-random structure[6]. In turn, both the correlation
length j.fSspdg−1/2 and the widthkw2l.s1/2dfSspdg−1/2

approach a finite value(synchronized state) and become self-
averaging in theN→` limit. For example, for the EW
model on the soft and hard SW versions in one dimension,
for small p values,Sspd,p2 andSspd,p, respectively[6].

Thus, the correlation length becomesfinite for an arbitrarily
small but nonzero density of random links(soft network), or
for an arbitrarily small but nonzero strength of the random
links (one such link per site, hard network).

This is the fundamental effect of extending the original
dynamics to a SW network: it decouples the fluctuations of
the originally correlated system. Then, the extreme-value
limit theorems can be applied using the number of indepen-
dent blocksN/j in the system[9,16,29,30]. Further, if the
tail of the noise distribution decays in an exponential-like
fashion, the individual relative height distribution will also
do so [34], and depends on the combinationDi /w, where

Di =hi − h̄ is the relative height measured from the mean at
site i, and w;Îkw2l. Considering, e.g., the fluctuations
above the mean for the individual sites, we will then have
P.sDid.expf−csDi /wddg, where P.sDid denotes the
“disorder-averaged”(averaged over network realizations)
single-site relative height distribution, which becomes inde-
pendent of the sitei for SW networks. From the above it
follows that the cumulative distribution for the extreme-

height fluctuations relative to the meanDmax=hmax− h̄, if
scaled appropriately, will be given by Eq.(3) [35] in the
asymptotic large-N limit (such thatN/j@1). Further, from
Eq. (4), the average maximum relative height, to leading
order, will scale as

kDmaxl . wS lnsN/jd
c

D1/d

.
w

c1/d flnsNdg1/d. s5d

(Note, that bothw and j approach theirfinite asymptotic
values in the large-N limit for SW-coupled systems.) Also,
the same logarithmic scaling withN holds for the largest

relative deviations below the meankh̄−hminl and for the
maximum spreadkhmax−hminl. This is the central point of our
paper: in SW-synchronized systems with unbounded local
variables driven by exponential-like noise distribution(such
as Gaussian), the extremal fluctuations increase onlyloga-
rithmically with the number of nodes. This weak divergence,
which one can regard as marginal, ensures synchronization
for practical purposes in coupled multi-component systems.

Next we illustrate our arguments on a SW-synchronized
system, the scalable parallel discrete-event simulator for
asynchronous dynamics[4]. Consider an arbitrary one-
dimensional system with nearest-neighbor interactions, in
which the discrete events(update attempts in the local con-
figuration) exhibit Poisson asynchrony. In the one site per
processing element(PE) scenario, each PE has its own local
simulated time, constituting the virtual time horizonhhistdji=1

N

(essentially, the progress of the individual nodes). Here t is
the discrete number of parallel steps executed by all PEs,
which is proportional to the wall-clock time andN is the
number of PEs. According to the basic conservative synchro-
nization scheme[19], at each parallel stept, only those PEs
for which the local simulated time is not greater then the
local simulated times of their virtual neighbors, can incre-
ment their local time by an exponentially distributed random
amount.(Without loss of generality we assume that the mean
of the local time increment is one in simulated time units.)
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Thus, denoting the virtual neighborhood of PEi by Si, if
histdøminjeSi

hhjstdj, PE i can update the configuration of the
underlying site it carries and determine the time of the next
event. Otherwise, it idles. Despite its simplicity, this rule
preserves unaltered the asynchronous causal dynamics of the
underlying system[19,20]. In the original algorithm[19], the
virtual communication topology between PEs mimics the in-
teraction topology of the underlying system. For example,
for a one-dimensional system with nearest-neighbor interac-
tions, the virtual neighborhood of PEi, Si, consists of the left
and right neighbor, PEi −1 and PEi +1. It was shown[20]
that then the virtual time horizon exhibits KPZ-like kinetic
roughening and the steady-state behavior in one dimension is
governed by the EW Hamiltonian. Thus, the average width
of the virtual time horizon(the spread in the progress of the
individual PEs) diverges whenN→` [20], hindering effi-
cient data collection in the measurement phase of the simu-
lation [17]. To achieve a near-uniform progress of the PEs
without employing frequent global synchronizations, it was
shown[4] that including randomly chosen PEs(in addition
to the nearest neighbors) in the virtual neighborhood results
in a finiteaveragewidth. Here we demonstrate that SW syn-
chronization in the above PDES scheme results in logarith-
mically increasing extreme fluctuations in the simulated time
horizon, governed by the FTG distribution.

In one implementation of the above scheme, each PE has
exactly one random neighbor(in addition to the nearest
neighbors) and the local simulated time of the random neigh-
bor is checked only with probabilityp at every simulation
step. The corresponding communication network is the hard
version of the SW network, as described earlier, and the
“strength” of the random links is controlled by the relative
frequency p of the basic synchronizational steps through
those links. In an alternative implementation, the communi-
cation topology is the soft version the SW network(with p
average number of random links per PE), and the random
neighbors are checked at every simulation step together with
the nearest neighbors. Note that in both implementations
(where the virtual neighborhoodSi now includes possible
random neighbor(s) for each sitei), the extra checking of the
simulated time of the random neighbor is not needed for the
faithfulness of the simulation. It is merely introduced to con-
trol the width of the time horizon[4].

To study the extreme fluctuations of the SW-synchronized
virtual time-horizon, we “simulated the simulations”, i.e., the
evolution of the local simulated times based on the above
exact algorithmic rules. By constructing histograms forDi,
we observed that the tail of the disorder-averaged individual
relative-height distribution decays exponentially for both SW
constructions. Then, we constructed histograms for the
scaled extreme-height fluctuations. The results, together with
the similarly scaled FTG density[35], are shown in Fig. 1.
We also observed that the distribution of the extreme values
becomesself-averaging, i.e., independent of the network re-
alization. Finally, Fig. 2 shows that for sufficiently largeN
(such thatw essentially becomes system-size independent)
the average(or typical) size of the extreme-height fluctua-
tions divergelogarithmically, according to Eq.(5) with d
=1. We also found that the largest relative deviations below

the meankh̄−hminl, and the maximum spreadkhmax−hminl

follow the same scaling with the system sizeN. Note, that for
our specific system(PDES time horizon), the “microscopic”
dynamics is inherently non-linear, but the effects of the non-
linearities only give rise to a renormalized massSspd (leav-
ing Sspd.0 for all p.0) [4,36]. Thus, the dynamics is ef-
fectively governed by relaxation in a small world, yielding a
finite correlation length and, consequently, the slow logarith-
mic increase of the extreme fluctuations with the system size
[Eq. (5)]. Also, for the PDES time horizon, the local height
distribution is asymmetric with respect to the mean, but the
average size of the height fluctuations is, of course, finite for
both above and below the mean. This specific characteristic
simply yields different prefactors for the extreme fluctuations
[Eq. (5)] above and below the mean, leaving the logarithmic
scaling withN unchanged.

In summary, we considered the extreme-height fluctua-
tions in a prototypical model with local relaxation, un-
bounded local variables, and short-tailed noise. We argued,
that when the interaction topology is extended to include

FIG. 1. Disorder-averaged probability densities for the scaled
(zero mean and unit variance) extreme-height fluctuations for the
SW-synchronized PDES time horizons.(a) For the hard SW net-
work with p=0.10 and(b) for the soft SW network withp=0.50, on
log-normal scales for three system sizes. The solid curve corre-
sponds to the similarly scaled FTG density[35] for comparison.

FIG. 2. Average maximum relative height and average width for
the SW-synchronized time horizon as a function of the number of
nodes(PEs). Solid symbols: hard SW network withp=0.10. Open
symbols: soft SW network withp=0.50. Note the normal-log
scales.
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random links in a SW fashion, the statistics of the extremes
is governed by the FTG distribution. This finding directly
addresses synchronizability in generic SW-coupled systems
where relaxation through the links is the relevant node-to-
node process and effectively governs the dynamics. We illus-
trated our results on an actual synchronizational problem in
the context of scalable parallel simulations. Analogous ques-
tions for heavy-tailed noise distribution and different types of
networks have relevance to various transport and transmis-
sion phenomena in natural and artificial networks[37,38].
For example, heavy-tailed noise typically generates similarly
tailed local field variables through the collective dynamics.

Then, the largest fluctuations can still diverge as a power law
with the system size(governed by the Fréchet distribution
[8,9]), motivating further research for the properties of ex-
treme fluctuations in complex networks[36].
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